MAT1033C Intermediate Algebra Chapter 8 Test Review

McCarthy

CRN

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Solve the equation.

1)
$$x^2 - 3 = 0$$

A) $\frac{3}{2}$

B)
$$-\sqrt{3}$$
, $\sqrt{3}$

2)
$$x^2 + 49 = 0$$

$$4 + 49 = 0$$

A) $-7, 7$

3)
$$3x^2 - 33 = 0$$

A) 12

C)
$$-\sqrt{11}$$
, $\sqrt{11}$

3) _____

Solve the equation.

4)
$$x^2 + 16x + 47 = 0$$

A)
$$-8 - \sqrt{17}$$
, $-8 + \sqrt{17}$
C) $8 - \sqrt{47}$, $8 + \sqrt{47}$

5) _____

A)
$$-8 - \sqrt{17}, -8 + \sqrt{17}$$

C) $8 - \sqrt{47}, 8 + \sqrt{47}$

B)
$$-16 + \sqrt{47}$$

D) $8 + \sqrt{17}$

5)
$$x^2 + 5x - 5 = 0$$

A)
$$\frac{-5 - 3\sqrt{5}}{2}$$
, $\frac{-5 + 3\sqrt{5}}{2}$

C)
$$\frac{-5-3\sqrt{5}}{2}$$

B)
$$-5 - 3\sqrt{5}$$
, $-5 + 3\sqrt{5}$

D)
$$\frac{5+3\sqrt{5}}{2}$$

6)
$$9x^2 + 36x + 32 = 0$$

A) $-\frac{4}{9}$, $-\frac{8}{9}$ B) $-\frac{8}{9}$, $\frac{40}{9}$

A)
$$-\frac{4}{9}$$
, $-\frac{8}{9}$

B)
$$-\frac{8}{9}, \frac{40}{9}$$

C)
$$-\frac{4}{3}$$
, $-\frac{8}{3}$ D) $\frac{4}{3}$, $\frac{8}{3}$

D)
$$\frac{4}{3}$$
, $\frac{8}{3}$

6) _____

Use the quadratic formula to solve the equation.

7)
$$2x^2 - 7x - 9 = 0$$

A)
$$\frac{2}{9}$$
, 1

B)
$$\frac{2}{9}$$
, -1

C)
$$\frac{2}{9}$$
,

C)
$$\frac{2}{9}$$
, 0 D) $\frac{9}{2}$, -1

8)
$$6x^2 = -10x - 1$$

A) $\frac{-10 - \sqrt{19}}{6}$, $\frac{-10 + \sqrt{19}}{6}$

C)
$$\frac{-5-\sqrt{19}}{6}$$
, $\frac{-5+\sqrt{19}}{6}$

B)
$$\frac{-5 - \sqrt{19}}{12}$$
, $\frac{-5 + \sqrt{19}}{12}$

D)
$$\frac{-5 - \sqrt{31}}{6}$$
, $\frac{-5 + \sqrt{31}}{6}$

9)
$$2x^2 + 10x + 7 = 0$$

A) $\frac{-5 - \sqrt{39}}{2}$, $\frac{-5 + \sqrt{39}}{2}$

b)
$$\frac{-5 - \sqrt{39}}{2}$$
, $\frac{-5 + \sqrt{39}}{2}$ B) $\frac{-5 - \sqrt{11}}{2}$, $\frac{-5 + \sqrt{11}}{2}$

C)
$$\frac{-10 - \sqrt{11}}{2}$$
, $\frac{-10 + \sqrt{11}}{2}$

D)
$$\frac{-5 - \sqrt{11}}{4}$$
, $\frac{-5 + \sqrt{11}}{4}$

Solve.

10) Because of the increase in traffic between Springfield and Orangeville, a new road was built to connect the two towns. The old road goes south x miles from Springfield to Freeport and then goes east x + 5 miles from Freeport to Orangeville. The new road is 7 miles long and goes straight from Springfield to Orangeville. Find the number of miles that a person saves by driving the new road over the old one.

Springfield

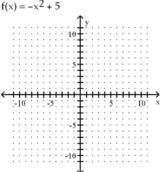
Freeport

Orangeville

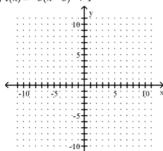
A)
$$(\sqrt{73} - 7)$$
 mi

B)
$$(\sqrt{73} + 7)$$
 mi

C)
$$\left[\frac{5}{2} + \frac{\sqrt{73}}{2}\right]$$
 m


C)
$$\left(\frac{5}{2} + \frac{\sqrt{73}}{2}\right)$$
 mi D) $\left(-\frac{5}{2} + \frac{\sqrt{73}}{2}\right)$ mi

SHORT ANSWER. Show all your work and circle your final answer.


Graph the function. Identify the vertex and axis of symmetry.

11)
$$f(x) = -x^2 + 5$$

12) $f(x) = -3(x-3)^2 + 4$

12) ___

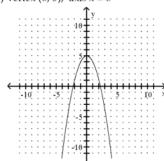
13) $f(x) = \frac{1}{5}(x+4)^2 - 1$

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

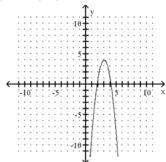
- 14) An arrow is fired into the air with an initial velocity of 128 feet per second. The height in feet of the 14) arrow t seconds after it was shot into the air is given by the function $h(t) = -16t^2 + 128t$. Find the maximum height of the arrow.
 - A) 448 ft
- B) 64 ft
- C) 256 ft
- D) 768 ft
- 15) The hypotenuse of a right triangle is 15 feet long. One leg of the triangle is 5 feet longer then the 15) _____ other leg. Find the perimeter of the triangle. A) $\left[-\frac{5}{2} + \frac{5\sqrt{17}}{2}\right]$ ft B) $(5\sqrt{17} - 15)$ ft C) $\left(\frac{5}{2} + \frac{5\sqrt{17}}{2}\right)$ ft D) $(5\sqrt{17} + 15)$ ft

A)
$$\left[-\frac{5}{2} + \frac{5\sqrt{17}}{2}\right]$$
 f

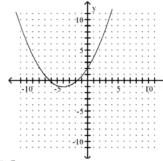
B)
$$(5\sqrt{17} - 15)$$
 ft

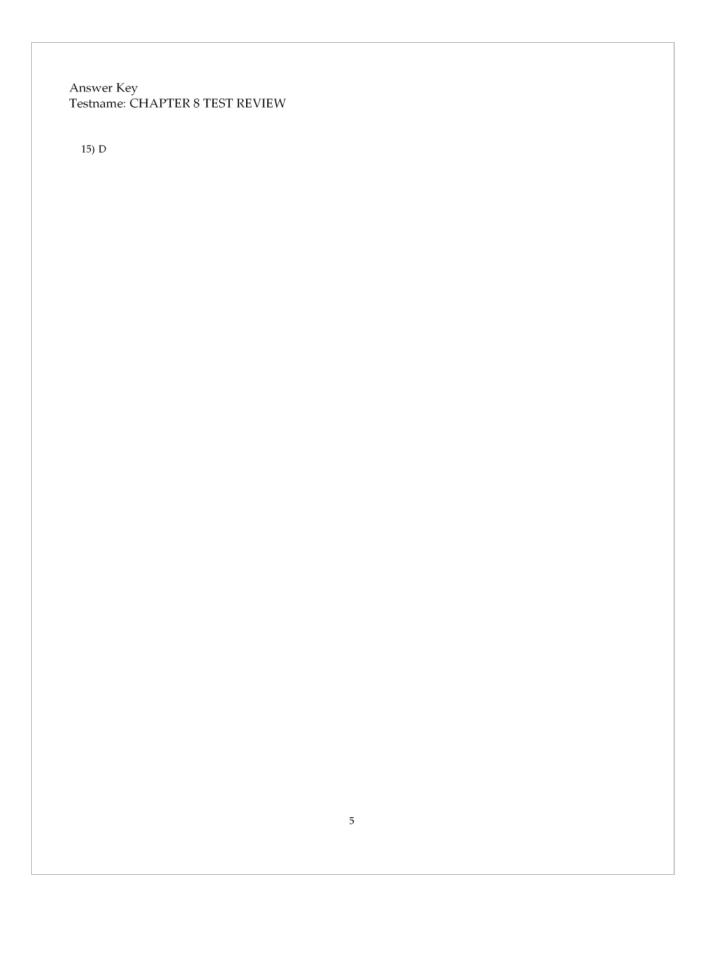

$$C)\left[\frac{5}{2} + \frac{5\sqrt{17}}{2}\right]f$$

D)
$$(5\sqrt{17} + 15)$$
 f


Answer Key

Testname: CHAPTER 8 TEST REVIEW


- 1) B 2) B 3) C
- 4) A
- 5) A
- 6) C 7) D
- 8) C
- 9) B
- 10) A
- 11) vertex (0, 5); axis x = 0


12) vertex (3, 4); axis x = 3

13) vertex (-4, -1); axis x = -4

14) C

